Main Article Content
Opatrum sabulosum L. (Tenebrionidae: Coleoptera) is a widespread phytophagous insect in the steppe zone, which in years of mass reproduction can cause damage to numerous crops, but is most dangerous for vegetable seedlings, as adults readily feed on wilted plant organs. As insects are increasingly developing resistance to existing synthetic insecticides and the organic farming market is growing, it is becoming increasingly important to identify new, effective and environmentally friendly means of controlling pest populations, such as the use of entomophages. Unfortunately, there are no data on invertebrate predators that are capable of natural control populations of phytophages from the Tenebrionidae family and O. sabulosum in particular. We evaluated the ability of 17 species of predators from 7 families to prey on O. sabulosum adults in a laboratory experiment. The results show that generalist predators, especially ground beetles and representatives of some other families, are capable of predation against O. sabulosum adults. The highest predation rates were recorded for Reduvius personatus, Rhynocoris iracundus, Staphylinus caesareus (100% of attacks) and Broscus cephalotes (73%). Lower predation rates were recorded for Molops piceus (40%), Harpalus rufipes (33%) and Calathus ambiguus (27%). A moderate percentage of attacks was recorded for Hister quadrimaculatus (20%) and Harpalus affinis (13%). Other entomophages did not prey on O. sabulosum during the experiments. Undoubtedly, the ground beetles B. cephalotes, H. rufipes and C. ambiguus have the potential to play a significant role in the natural control of the populations of the above-mentioned phytophagous. However, this topic undoubtedly requires further research, especially in the field.
Article Details
Anjos D.V., Tena A., Arleu B.V., Carvalho R.L., Torezan-Silingardi H., Kleber D., Perfecto I. 2022. The effects of ants on pest control: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 289:1–11. https://doi.org/10.1098/rspb.2022.1316.
Arus L., Kikas A., Luik A. 2012. Carabidae as natural enemies of the raspberry beetle (Byturus tomentosus F.). Zemdirbyste 99(3):327–331.
De Backer L., Megido R., Haubruge E., Verheggen F., Haubruge É., Verheggen F.J. 2014. Macrolophus pygmaeus as an efficient predator of the tomato leafminer Tuta absoluta in Europe. A review climate change and multitrophic interactions view project Macrolophus pygmaeus as an efficient predator. Biotechnol. Agron. Soc. Environ. 18: 536–543.
Ballman E.S., Collins J.A., Drummond F.A. 2017. Pupation behavior and predation on Drosophila suzukii (Diptera: Drosophilidae) pupae in maine wild blueberry fields. Journal of Economic Entomology. 110: 2308–2317. https://doi.org/10.1093/jee/tox233.
Boetzl Fabian A., Konle A., Krauss J. 2020. Aphid cards – useful model for assessing predation rates or bias prone nonsense? Journal of Applied Entomology, 144(1–2):74–80. https://doi.org/10.1111/jen.12692.
Bouvet J.P.R., Urbaneja A., Pérez-Hedo M., Monzó C. 2019. Contribution of predation to the biological control of a key herbivorous pest in citrus agroecosystems. Journal of Animal Ecology. 88: 915–926. https://doi.org/10.1111/1365-2656.12982.
Brygadyrenko V., Nazimov S. 2014. Nutrition of Opatrum sabulosum (Coleoptera, Tenebrionidae) when fed on leaves of trees, shrubs and liana plants in the conditions of a laboratory experiment. Baltic Journal of Coleopterology. 14: 59–72.
Brygadyrenko V., Nazimov S. 2015. Trophic relations of Opatrum sabu-losum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. ZooKeys, 68 (481): 57–68. https://doi.org/10.3897/zookeys.481.7015.
Carpaneto G.M., Fattorini S. 2001. Spatial and seasonal organisation of a dark-ling beetle (Coleoptera, Tenebrio-nidae) community inhabiting a medi-terranean coastal dune system. Italian Journal of Zoology. 68: 207–214.
Chernej L.S. 2005. Darkling beetles (Coleoptera, Tenebrionidae). Kyiv: Naukova dumka. 424 p.
Cividanes F.J. 2021. Carabid beetles (Coleoptera: Carabidae) and biological control of agricultural pests in Latin America. Annals of the Entomological Society of America. 114:175–191. https://doi.org/10.1093/aesa/saaa051.
Dalir S., Hajiqanbar H., Fathipour Y.,Khanamani M. 2021. A comprehen-sive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. Pest Management Science. 77: 5418–5429. https://doi.org/10.1002/ps.6581.
Echegaray E., Cloyd R. 2013. Life history characteristics of the rove beetle, Dalotia coriaria (Coleoptera: Staphy-linidae) under laboratory conditions. Journal of the Kansas Entomological Society. 86: 145–154. https://doi.org/10.2317/JKES120927.1.
El-Danasoury H., Cerecedo C., Córdoba M., Iglesias-Piñeiro J. 2017. Predation by the carabid beetle Harpalus rufipes on the pest slug Deroceras reticulatum in the laboratory. Annals of Applied Biology. 170: 251–62. https://doi.org/10.1111/aab.12337.
El-Danasoury H., Iglesias-Piñeiro J. 2018. Predation by polyphagous carabid beetles on eggs of a pest slug: potential implications of climate change. Journal of Applied Entomology. 142: 340–348. https://doi.org/10.1111/jen.12474.
Fang Y., Shu L., Qingxuan X., Wang J., Yang Y., Mi Y., Jin Z., Desneux N., Wang S. 2022. Optimizing the use of basil as a functional plant for the biological control of aphids by Chrysopa pallens (Neuroptera: Chrysopidae) in greenhouses. Insects. 13:552. https://doi.org/10.3390/insects13060552.
Fattorini S. 2010. Use of insect rarity for biotope prioritisation: the tenebrionid beetles of the Central Apennines (Italy). Journal of Insect Conservation. 14: 367–378.
Francis N., Kanga L., Mannion C., Haseeb M., Ananga A., Crisostomo J. 2022. First report on voracity and feeding preference of predatory beetle, Thalassa montezumae (Coleoptera: Coccinellidae) on croton scale, Phalacrococcus howertoni (Hemiptera: Coccidae). Agriculture (Switzerland). 12: 990. https://doi.org/10.3390/agriculture12070990.
Franin K., Franin G., Maričić B., Marcelić Š., Pavlović M., Kos T., Barić B., Laznik Ž. 2021. True bugs (heteroptera) assemblage and diversity in the ecological infrastructures around the mediterranean vineyards. Bulletin of Insectology. 74: 65–78.
Frank T., Bramböck M. 2016. Predatory beetles feed more pest beetles at rising temperature. BMC Ecology. 16:1–8. https://doi.org/10.1186/s12898-016-0076-x.
García F., Núñez E., Lacava M., Silva H., Martínez S., Pétillon J. 2021. Experimental assessment of trophic ecology in a generalist spider predator: implications for biocontrol in uruguayan crops. Journal of Applied Entomology. 145: 82–91. https://doi.org/10.1111/jen.12811.
Gharbi N. 2021. Effectiveness of inundative releases of Anthocoris nemoralis (Hemiptera: Anthocoridae) in controlling the olive psyllid Euphyllura olivina (Hemiptera: Psyllidae). European Journal of Entomology. 118: 135–141. https://doi.org/10.14411/EJE.2021.014.
Gomez-Marco, F., Gebiola, M., Simmons, G.S., Stouthamer, R., Native. 2022. Native, naturalized and commercial predators evaluated for use against Diaphorina citri. Crop Protection. 155: 105907. https://doi.org/10.1016/j.cropro.2022.105907.
Hagler, J.R., Jackson C.G., Isaacs R., Machtley S.A. 2004. Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci. Journal of Insect Science. 4(May): 1–13. https://doi.org/10.1673/031.004.0101.
Herrick N., Cloyd R. 2017. Effects of growing medium type and moisture level on predation by adult rove beetle, Dalotia coriaria (Coleoptera: Staphylinidae), on fungus gnat, Bradysia sp. nr. coprophila (Diptera: Sciaridae), larvae under laboratory and greenhouse conditions. HortScience. 52: 736–741. https://doi.org/10.21273/HORTSCI11842-17.
Horton, David R. 2024. Psyllids in natural habitats as alternative resources for key natural enemies of the pear psyllids (Hemiptera: Psylloidea). Insects. 15:37. https://doi.org/10.3390/insects15010037.
Iosob G., Cristea T. 2022. The study of Perillus bioculatus (Heteroptera, Pentatomidae) population as a potential key factor in the development of biological management strategies for Leptinotarsa decemlineata say at Solanum melongena. Romanian Journal of Horticulture. 3: 91–98. https://doi.org/10.51258/rjh.2022.10.
Jałoszyński P., Olszanowski Z. 2016. Feeding of two species of Scydmaeninae “hole scrapers”, Cephennium majus and C. ruthenum (Coleoptera: Staphylinidae), on oribatid mites. European Journal of Entomology. 113: 372–386. https://doi.org/10.14411/eje.2016.048.
Kamenova S., Tougeron K., Cateine M., Marie A., Plantegenest M. 2015. Behaviour-driven micro-scale niche differentiation in carabid beetles. Entomologia Experimentalis et Applicata. 155: 39–46. https://doi.org/10.1111/eea.12280.
Kheirodin A., Costamagna A., Cárcamo H. 2019. Laboratory and field tests of predation on the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae). Biocontrol Science and Technology. 29: 451–465. https://doi.org/10.1080/09583157.2019.1566437.
Kheirodin A., Simmons A., Legaspi J., Grabarczyk E., Toews M., Roberts P., Chong J., Snyder W., Schmidt J. 2020. Can generalist predators control Bemisia tabaci? Insects, 11: 1–22. https://doi.org/10.3390/insects11110823.
Leman A., Ingegno B., Tavella L., Janssen A., Messelink G. 2020. The omnivorous predator Macrolophus pygmaeus, a good candidate for the control of both greenhouse whitefly and poinsettia thrips on gerbera plants. Insect Science. 27: 510–518. https://doi.org/10.1111/1744-7917.12655.
Van Lenteren J.C., Bueno V., Santos-Silva M., Montes F.C., Cusumano A., Fatouros N. E. 2023. The mirid predator Macrolophus basicornis smells and avoids eggs of Tuta absoluta parasitized by Trichogramma pretiosum. https://doi.org/10.21203/rs.3.rs-2449997/v1
Martin-Chave A., Béral C., Capowiez Y. 2019. Agroforestry has an impact on nocturnal predation by ground beetles and opiliones in a temperate organic alley cropping system. Biological Control 129 (June 2018): 128–135. https://doi.org/10.1016/j.biocontrol.2018.10.009.
Meinke L., Souza D., Siegfried B. 2021. The use of insecticides to manage the western corn rootworm, Diabrotica virgifera virgifera, leconte: history, field-evolved resistance, and associated mechanisms. Insects. 12: 1–22. https://doi.org/10.3390/insects12020112.
Mendoza J.E., Balanza V., Rodríguez-Gómez A., Cifuentes D., Bielza P. 2022. Enhanced biocontrol services in artificially selected strains of orius laevigatus. Journal of Pest Science. 95: 1597–1608. https://doi.org/10.1007/s10340-022-01539-8.
Michalko R., Gajski D., Košulič O., Khum W., Michálek O., Pekár S. 2022. Association between arthropod densities suggests dominance of top-down control of predator-prey food-webs on pear trees during winter. Food Webs. 33:e00261. https://doi.org/10.1016/j.fooweb.2022.e00261.
Nazimov S., Brygadyrenko V. 2013. Does saprophagy play a significant role in nutrition of Opatrum sabulosum (Coleoptera, Tenebrionidae)? Bulletin of Dnipropetrovsk University. Biology, Ecology. 21: 43–50.
Nazimov S., Pahomov A. 2015. Ecological features of the distribution of Opatrum sabulosum in the territory of Steppe Dnipro region. Bulletin of the Dnipropetrovsk State Agrarian and Economic University. Biological Sciences. 2: 98–101.
Nourmohammadpour-Amiri M., Shayanmehr M., Amiri-Besheli B. 2022. Influence of ground beetles (Carabidae) as biological agent to control of the mediterranean fruit fly pupae, Ceratitis capitata, in iranian citrus orchards. Journal of Asia-Pacific Entomology. 25: 1019-1086. https://doi.org/10.1016/j.aspen.2022.101986.
Park J., Munir M., Hwang H., Jung D., Lee K. 2021. Comparison of the predation capacities of two soil-dwelling predatory mites, Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae), on three thrips species. Journal of Asia-Pacific Entomology. 24: 397–401. https://doi.org/10.1016/j.aspen.2021.01.009.
Pasquier A., Andrieux T., Martinez-Rodiguez P., Ferrero M. 2021. Predation capacity of soil-dwelling predatory mites on two major maize pests. Acarologia. 61: 577–580. https://doi.org/https://doi.org/10.24349/o7z8-gXu4.
Perez-Alvarez R., Nault B., Poveda K. 2019. Effectiveness of augmentative biological control depends on landscape context. Scientific Reports 9: 1–16. https://doi.org/10.1038/s41598-019-45041-1.
Plata-Rueda A., Martínez L.C., Zanuncio J.C., Serrão J.E. 2022. Advances zoophytophagous stinkbugs (Pentatomidae) use in agroecosystems: biology, feeding behavior and biological control. Journal of Pest Science. 95: 1485–1500. https://doi.org/10.1007/s10340-022-01518-z.
Puchkov A.V. 2018. Ground beetles of transformed cenoses of Ukraine (Coleoptera, Tenebrionidae). Kyiv: 448 p.
Rasekh A., Osawa N. 2020. Direct and indirect effect of cannibalism and intraguild predation in the two sibling Harmonia ladybird beetles. Ecology and Evolution. 10: 5899–5912. https://doi.org/10.1002/ece3.6326.
Reeves L.A., Garratt M.P., Fountain M.T., Senapathi D. 2023. Functional and behavioral responses of the natural enemy Anthocoris nemoralis to Cacopsylla pyri, at different temperatures. Journal of Insect Behavior. 36: 222–238. https://doi.org/10.1007/s10905-023-09836-5.
Rocha F.H., Infante F., Castillo A., Ibarra-Nuñez G., Goldarazena A., Funderburk J.E., Weintraub P. 2015. Natural enemies of the Frankliniella complex species (Thysanoptera: Thripidae) in ataulfo mango agroecosystems. Journal of Insect Science 15: 114. https://doi.org/10.1093/jisesa/iev096.
Saleem M., Hussain D., Anwar H., Saleem M., Ghouse G., Abbas M. 2014. Predation efficacy of Menochilus sexmaculatus Fabricus (Coleoptera: Coccinellidae) against Macrosiphum rosae under laboratory conditions. Journal of Entomology and Zoology Studies. 2: 160–163.
Sardar M., Khatun M.R., Islam K.S., Haque M.T., Das G. 2020. Potentiality of light source and predator for controlling brown planthopper. Progressive Agriculture. 30: 275–281. https://doi.org/10.3329/pa.v30i3.45152.
Schäfer A.M., Schäfer F., Wagner T., Sinsch U. 2018. Carabid predation on Bombina variegata metamorphs: size at and timing of metamorphosis matter. Salamandra 54: 222–228.
Snyder W.E. 2019. Give predators a complement: conserving natural enemy biodiversity to improve biocontrol. Biological Control, 135(April):73–82. https://doi.org/10.1016/j.biocontrol.2019.04.017.
Sumarokov O.M. 2023. Species diversity and ecological and functional characteristics of beetles (Insecta: Coleoptera) in the Dnipro region (Ukraine). Dnipro: 146 p.
Toft S., Jensen K., Sørensen J.G., Sigsgaard L., Holmstrup M. 2020. Food quality of Ephestia eggs, the aphid Rhopalosiphum padi and mixed diet for Orius majusculus. Journal of Applied Entomology. 144: 251–262. https://doi.org/10.1111/jen.12739.
Tourtois J., Grieshop M.J. 2015. Susceptibility of Dalotia coriaria (Coleoptera: Staphylinidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). Insects. 6: 224–235. https://doi.org/10.3390/insects6010224.
Tun K.M., McCormick A.C., Jones T., Minor M. 2020. The potential of harlequin ladybird beetle Harmonia axyridis as a predator of the giant willow aphid Tuberolachnus salignus: voracity, life history and prey preference. BioControl. 65: 313–321. https://doi.org/10.1007/s10526-020-10010-5.
Zhang N.X., Wieringen D., Messelink G.J., Janssen A. 2019. Herbivores avoid host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. Journal of Pest Science. 92: 737–745. https://doi.org/10.1007/s10340-018-1036-3.
Zhukov O.V. 2009. Ecomorphic analysis of consortia of soil animals. Dnipro: 239.
Zhang Q., Zhang R., Zhang Q., Ji D., Zhou X., Jin L. 2021. Functional response and control potential of Orius sauteri (Hemiptera: Anthocoridae) on tea thrips (Dendrothrips minowai Priesner). Insects. 12: 1132. https://doi.org/10.3390/insects12121132.
Zuma M., Njekete C., Konan K., Bearez P., Amiens-Desneux E., Desneux N., Lavoir A. V. 2023. Companion plants and alternative prey improve biological control by Orius laevigatus on strawberry. Journal of Pest Science 96: 711–721. https://doi.org/10.1007/s10340-022-01570-9.