Tychus normandi Jeanell, 1950 and Tychus monilicornis Reitter, 1880 (Staphylinidae: Pselaphinae) in a coastal fen in Mecklenburg-Western Pomerania, Germany – distribution, habitat preference, and phenology of two extremely rare species

Main Article Content

Andreas Kleeberg
Martin Lindner


Keywords : fen, rove beetles, habitat requirements, Phragmites, salt tolerance, phenology
Abstract

The minerotrophic coastal paludification fen in the ‘Heiligensee and Hütelmoor’ nature reserve northeast of Rostock, which is aperiodically influenced by brackish water from the Baltic Sea during storm surges, was investigated for two years using pitfall trap series (PTS). Six to eight pitfall traps per PTS were operated from May to October at six sites 2020 and eight sites 2021 with fortnightly emptying. Remarkably, the extremely rare species threatened by extinction Tychus normandi Jeanell, 1950 and T. monilicornis Reitter, 1880 were regularly caught in almost all the sites surveyed. In 2020, 4405 individuals (ind.) of rove beetles were captured in 171 species, including T. normandi in 131 ind. and T. monilicornis in 15 ind. In 2021, 4842 ind. were captured in 143 species, of which T. normandi in 195 ind. and T. monilicornis in 23 ind. Their activity peaked from late May to late June. In 2021, the proportion of ♂ of T. normandi was 83.6 %, that of T. monilicornis 73.9 %. For clarification whether the Tychus species exhibit a salt preference, three soil cores each were analyzed for salinity on each of the eight sites surveyed in 2021 and one reference site in June 2022. The sites investigated had a salt content of 75-867 mg/100 g soil. There was no evidence of a salt preference for either Tychus species; thus, they are apparently halotolerant. The dynamic and constant water supply of intact Phragmites reedbeds in the nature reserve as well as mesoclimatic effects may be crucial for the occurrence of both hygrophilous species. Salt grassland management, here late summer mowing, reduces the habitat suitablility for both species.

Article Details

Author Biographies

Andreas Kleeberg, Zum Alten Windmühlenberg, Germany

Andreas Kleeberg. Zum Alten Windmühlenberg 26, 12524 Berlin, Germany;
e-mail: a.g.kleeberg@t-online.de

Martin Lindner , Department of General and Systematic Zoology, Institute of Biosciences, University of Rostock, Germany

Martin Lindner. Department of General and Systematic Zoology, Institute of
Biosciences, University of Rostock, 18055 Rostock, Germany;
e-mail: martin.lindner@uni-rostock.de

References

Báldi A. 1999. Microclimate and vegetation edge effects in a reedbed in Hungary. Biodiversity and Conservation 8: 1697–1706.

Besuchet C. 1974. Familie Pselaphidae. In: Freude H., Harde K.W., Lohse G.A. (Eds.), Die Käfer Mitteleuropas, Bd. 5. Goecke & Evers, Krefeld: 305–362.

Bong L.-J., Neoh K.-B., Jaal Z., Lee C.-Y. 2013. Influence of temperature on survival and water relations of Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology 50(5): 1003–1013.

Dahms P. 1991. Wasserregulierung im Hütelmoor. Universität Rostock, Fachbereich Landeskultur und Umweltschutz, Fachgebiet Kulturtechnik, unveröffentlichte Studie, 18 pp.

Dietrich O., Fahle M., Kaiser T., Steidl J. 2019. Eine Lysimeter-Studie zu Auswirkungen unterschiedlicher Grundwassersteuerregime auf den Bodenwasserhaushalt eines grundwassernahen Standorts. Hydrologie und Wasserbewirtschaftung 63(1): 6–18.

Dittmer S., Schrader S. 2000. Long-term effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia 44(3–4): 527–538.

Frase T., Wolf F. 2011. Bemerkenswerte Wasserwanzenfunde (Nepomorpha, Gerromorpha) aus Mecklenburg-Vorpommern. Virgo 14(1): 5–9.

Hansen M. 1986. Tychus monilicornis Reitter, 1880 og T. normandi Jeannel, 1950 – to for Danmark nye pselapher (Coleoptera: Pselaphidae). Entomologiske Meddelelser 53: 65–68.

Hoffmann H., Michalik P., Görn S., Fischer K. 2016. Effects of fen management and habitat parameters on staphylinid beetle (Coleoptera: Staphylinidae) assemblages in north-eastern Germany. Journal of Insect Conservation 20: 129–139.

Haesen S. et al. 2021. ForestTemp – sub-canopy microclimate temperatures of European forests. Global Change Biology 27(23): 6307–6319.

Huang Y. et al. 2024. Enhanced stability of grassland soil temperature by plant diversity. Nature Geoscience 17(1): 44–50.

Irmler U., Lipkow E. 2018. Effect of environmental conditions on distribution patterns of rove beetles. In: Betz O., Irmler U., Klimaszewski J. (Eds.), Biology of Rove Beetles (Staphylinidae). Springer, Cham: 117–144.

Jeschke L. 1983. Landeskulturelle Probleme des Salzgrünlandes an der Küste. Naturschutzarbeit in Mecklenburg 26: 5–12.

Jeschke L. 1987. Vegetationsdynamik des Salzgraslandes im Bereich der Ostseeküste der DDR unter dem Einfluss des Menschen. Hercynia, N.F. 24: 321–328.

Kirchner A. 1971. Ein Beitrag zur Klassifizierung von Niedermoorstandorten in den drei Nordbezirken der DDR. Dissertation, Universität Rostock, 110 pp.

Kleeberg A. 2023. Faunistisch bemerkenswerte und für Mecklenburg-Vorpommern neue Arten der Kurzflügelkäfer – Teil 8. Archiv Natur- und Landeskunde Mecklenburg-Vorpommern 59: 6–28.

Koch K. 1989. Die Käfer Mitteleuropas. Ökologie, Bd. 1. Goecke & Evers, Krefeld, 440 pp.

Kopp D. et al. 2005. Karte der heutigen potentiellen natürlichen Vegetation Mecklenburg-Vorpommerns. Schriftenreihe des Landesamtes für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommerns 1, 159 pp.

Krischer H. 1977. Das Naturschutzgebiet Heiligensee und Hütelmoor. Naturschutzarbeit in Mecklenburg 20(3): 3–8.

Lenschow U. 1997. Landschaftsökologische Grundlagen und Ziele zum Moorschutz in Mecklenburg-Vorpommern. Materialien zur Umwelt in Mecklenburg-Vorpommern 97(3): 1–72.

Lenschow U., Thiel W. 2000. Das Moorschutzprogramm des Landes Mecklenburg-Vorpommern. Natur und Landschaft 75(8): 317–322.

Lindner M. et al. 2025. Die Mahd nasser Moorstandorte verringert die Aktivitätsdichte und Biomasse gefährdeter Bodenarthropoden. Natur und Landschaft 100(4): 139–147.

Lompe A. 1986. Ein neues Einbettungsmittel für Insektenpräparate. Entomologische Blätter 82(1–2): 119.

Majka C.G. 2012. Cafius aguayoi new for the Canadian fauna. Journal of the Acadian Entomological Society 8: 36–40.

Mal T.K., Narine L. 2004. The biology of Canadian weeds. Canadian Journal of Plant Science 84: 365–396.

Miegel K. et al. 2016. Untersuchung eines renaturierten Niedermoors – Teil 1. Hydrologie und Wasserbewirtschaftung 60(4): 242–258.

Miegel K. et al. 2017. Auswirkungen des Sturmhochwassers 2017. Hydrologie und Wasserbewirtschaftung 61(4): 232–243.

Schmidl J. et al. 2021. Rote Liste der Kurzflüglerartigen Deutschlands. In: Ries M. et al. (Eds.), Rote Liste gefährdeter Tiere Deutschlands, Bd. 5. Landwirtschaftsverlag, Münster: 31–95.

Pommeranz H. 1999. Einfluss eines Salzwassereinbruchs auf Laufkäfergemeinschaften. Diplomarbeit, Universität Rostock, 100 pp.

Sabella G., Šíma A. 2016. Study on Tychini of Balkan Peninsula. Zootaxa 4200(4): 591–599.

Schomann A., Afflerbach K., Betz O. 2008. Predatory behaviour of Central European pselaphine beetles. European Journal of Entomology 105(5): 889–907.

Šíma A., Švarc M., Jelínek J. 2018. Distribution of Tychus normandi in Bohemia. Klapalekiana 54: 249–252.

Sörensson M. 1983. Tychus normandi new for Norden. Entomologisk Tidskrift 104: 29–33.

Succow M., Joosten H. (Eds.) 2001. Landschaftsökologische Moorkunde. 2nd ed., Schweizerbart, Stuttgart, 622 pp.

Toro M. et al. 2022. Groundwater flow patterns in a coastal fen. Journal of Hydrology 615: 128726.

Statistics

Downloads

Download data is not yet available.
Recommend Articles